
264 

Standing capillary-gravity waves of finite 
amplitude : Corrigendum 

By PAUL CONCUS 
Lawrence Radiation Laboratory, University of California, 

Berkeley, California 

(Received 19 September 1963) 

The uniqueness condition that was utilized by the author (Concus 1962) is con- 
sidered. The condition, which excludes certain fluid depths, is shown to be 
physically unacceptable because it is essentially impossible to satisfy in practice. 
The resulting invalidation of the perturbation method is discussed, and a revision 
is presented, which invokes the presence of viscosity and allows retention of the 
previously obtained solutions. The revision may also be applied to the work of 
other authors who utilized the same method to solve other standing-wave 
problems. 

Consider the form that the uniqueness condition (12) takes for 6 = 0. It 
requires that the mean fluid depth h be such that, for every integer n a n d j  

n tanh nh __ - ~ +j2 
tanh h 

( n = 2 , 3  ,... ; j =  1 , 2  ,... ). (12a)) 

The manner in which these excluded depths are distributed over the positive 
real line (0 ,  co) is of importance and may be determined as follows. For any 
n > 1, the ratio tanhnhltanh h is continuous and decreases monotonically from 
n to 1 as h increases from 0 to 00. Thus, for each n there are approximately n - 2/n 
distinct values of the fluid depth excluded by (l2a). The totality of all such ex- 
cluded depths obtained by letting n run through its range of positive integers 
will form a denumerably infinite set of points ranging over the positive real line 

It is next shown that this set is densely distributed over (0, co). Let h, and h, 
be any two values of h such that 0 < h, < h,, and consider the interval (h,, h,). 
As h increases through all the values in (h,, h,), the ratio n tanh nhltanh h de- 
creases through all the values in the interval 

(0, a). 

(n tanh?zh,/tanhh,, n tanhnh,/tanhh,). (40) 

(tanhnh,/tanhh,, tanhnh,/tanhh,). (41) 

Consider the interval 

Since tanh h, < tanh h, and tanh nh, < 1 and since an N can be found such that 

tanh nh, > 4 + 4 (tanhh,/tanh h,) for all n 2 N ,  

the interval (41) contains the smaller interval 
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for all n 2 fl.7 Choose a rational number p / q  in this interval. Then (40) contains 
the rational number np/q. Choose n = N2pq. Then n tanh nhltanh h takes on the 
value of the perfect square N2p2 for some h in the interval (hl, h,). Hence, any 
such interval (hl,  h,) contains at  least one value of h excluded by (12a). Therefore 
the values of h excluded by (1 2 a )  form a denumerably infinite set which is densely 
distributed over the entire positive real line (0 ,  m). The proof carries through in 
the same manner for the depths excluded by (13) with S + 0 in the same manner, 
and the result is identical. 

Because the set of excluded depths is everywhere dense in the interval (0, a), 
a serious difficulty arises in applying the solution to a physical situation. When 
one measures a fluid depth in practice, one does not do so exactly, but specifies 
some small interval of non-zero length in which the depth is known to lie. However 
because the set of excluded depths is everywhere dense, one must always have 
an excluded value of h (in fact a countable infinity of them) in this interval. It is 
therefore impossible to satisfy the uniqueness condition in a given physical situa- 
tion. 

More serious than the inability to satisfy the uniqueness condition, which 
the denseness of the excluded depths implies, is the inability to deal with the 
resonances that also were thought to be eliminated by the uniqueness condition. 
For example, in solving ( 2 2 ) ,  the uniqueness condition was utilized to prevent 
the appearance of a resonant, or secular, term, which would be unbounded in 
time and violate the periodicity condition (7) .  For the higher-order equations, 
other such secular terms can appear, each of them corresponding to a fluid depth 
excluded by (12). In  such conditions of resonance and for nearby depths, which 
yield conditions of near-resonance, a higher-order term can become so large as to 
be of comparable magnitude with alower-order one. In  such a case, the derivation 
of the perturbation equations must be modified to take this fact into account. 
(For an example of the modifications required for one such resonant term, see 
Mack 1962.) The previous analysis has shown, moreover, that for any fluid 
depth there are infinitely many such resonant or near-resonant terms with which 
one must contend. Thus, there are always too many high-order terms which 
cannot be neglected in the development, because they are of comparable magni- 
tude with the low-order terms. Such considerations make it appear that the 
expansion procedure is not a suitable one for finding the desired periodic motion. 

Attempts of the author to find another method of developing the perturbation 
solution for inviscid periodic motion that will not fall into the above difficulty 
have not yet been successful, nor has a proof for the existence of the desired 
non-linear periodic motion been obtained. Experimental evidence of Fultz 
(1962), however, has verified that the use of the expansion procedure under 
question gives results that are physically observable. 

Some justification of the procedure on theoretical grounds can be made by 
invoking the presence of viscosity. It is only for the lower frequencies that one 
is justified in using an inviscid model for predicting the approximate behaviour 
of fluids of low viscosity. For higher frequencies (larger n) the model becomes 

t The author is indebted to  Dr G. Nooney for suggesting this and other features of the 
proof. 
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inaccurate, and the appearance of the high-frequency waves predicted by the 
model will be inhibited or at  least their amplitudes diminished in magnitude by 
the viscous forces that are present. One, therefore, must consider the possibility 
of a higher-order term in the perturbation expansion being of comparable 
magnitude with the fundamental term only for the smaller values of n. For 
larger n, the physical situation is no longer described by the mathematical 
formulation, and the high-frequency waves will not be present in the amounts 
predicted by the theory. 

Equation (12) may be utilized, therefore, only for the smaller values of n 
to ensure uniqueness and to predict the depths for which there may exist a 
resonant coupling with the fundamental linear mode. For larger values of n, 
however, both the expansion and (12) lose meaning. A cut-off value for n can 
be determined by taking the smallest n for which the viscous decay time of the 
nth linear mode, a quantity proportional to l/n2, is less than the period of the 
fundamental mode. For the case considered on p. 576 with h = 0-25, 6 = 0.02, 
and h = 10 cm in water, the corresponding cut-off value for n is 4. 

The above remarks can also be applied to the work of Tadjbakhsh & Keller 
(1960), where this methodof developing the perturbation solution was f i s t  intro- 
duced, to the work of Verma & Keller (1962) and Moiseyev (1958), where similar 
uniqueness conditions have also appeared, and, as well, to the work of Penny 
& Price (1952) and of Mack (1962). 

Page 569. At the beginning of the next-to-last line of the first paragraph before 

‘ek-ly(x,  t ) .  . .,’ insert ‘ 6  = ka the expansion parameter’. 

Two other errors should be corrected: 

Page 571. In  the line following (23), change ‘(21)’ to ‘(19)’. 
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